234x^2+(546x^2)-(352x^2)+(1234x^2)=11

Simple and best practice solution for 234x^2+(546x^2)-(352x^2)+(1234x^2)=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 234x^2+(546x^2)-(352x^2)+(1234x^2)=11 equation:



234x^2+(546x^2)-(352x^2)+(1234x^2)=11
We move all terms to the left:
234x^2+(546x^2)-(352x^2)+(1234x^2)-(11)=0
We add all the numbers together, and all the variables
1662x^2-11=0
a = 1662; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·1662·(-11)
Δ = 73128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{73128}=\sqrt{4*18282}=\sqrt{4}*\sqrt{18282}=2\sqrt{18282}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{18282}}{2*1662}=\frac{0-2\sqrt{18282}}{3324} =-\frac{2\sqrt{18282}}{3324} =-\frac{\sqrt{18282}}{1662} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{18282}}{2*1662}=\frac{0+2\sqrt{18282}}{3324} =\frac{2\sqrt{18282}}{3324} =\frac{\sqrt{18282}}{1662} $

See similar equations:

| 24x-22=-5(1-6x) | | 0.75(8+e)=2–1.25e | | 5,722+x=6,154 | | 24x-22=-5(1-6x | | 5n+1=3;+7 | | X²-20x-21=0 | | 19.95+85x=184.85 | | -4n-5+n=7(7-7n)=6(1+6n) | | x2+2x=4 | | 3u/7=-15 | | (3x-6)(9x+6)=0 | | 3x^2+92x=-9 | | -46=-v/3 | | 6x+35=7x+16 | | 75+3x-3=90 | | x2+12x=6 | | 3-4(x-2)=-2x-7 | | 36x+31=535 | | v=3.148(2)5 | | Y=4x^2+x-1 | | (3x+1)x(2x+1)=8 | | X-0.2x=260. | | 3x+15=3+4x | | 45-4x=19+9x | | 4(x-2)=x=10 | | 3x10x6=60 | | 180=-3(-4-7x | | x2-6x=5=0 | | 1.5-a=5.25 | | 1/3x2-2x=9 | | -7(9-2x)=137-11x | | 13x2−2x=9. |

Equations solver categories